

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

SiteFab: state of the art static website generator for humans

[image: https://github.com/ebursztein/sitefab/workflows/Linux/badge.svg]Linux Status [https://github.com/ebursztein/sitefab/actions]
[image: https://github.com/ebursztein/sitefab/workflows/macOS/badge.svg]macOS Status [https://github.com/ebursztein/sitefab/actions]
[image: https://codecov.io/gh/ebursztein/sitefab/branch/master/graph/badge.svg]Code coverage [https://codecov.io/gh/ebursztein/sitefab]

Getting Started in 30 seconds

Here is how to install SiteFab, Create a new site and compile it in less than
30 seconds:

install the main package
pip install sitefab
spacy download en_core_web_sm
pip install -U spacy-lookups-data

clone the site template as base
git clone https://github.com/ebursztein/sitefab-template.git mysite/

clone the plugins in your site directory
git clone https://github.com/ebursztein/sitefab-plugins.git mysite/plugins

generate your shiny new site
sitefab -c mysite/config/sitefab.yaml generate

Et voila! you know have a fully fonctional site that can be statically compiled.
As the next step you should add your content, customize the html templates and
tweak the plugins configuration to your liking!

Key Features

Here are some of the key highlevel functionalities that makes SiteFab the static generator of choice for modern websites:

	State of the art images processing stack: The images stack generate out of the box all you need to use image in optimal fashion including: reactive images for the <picture> element, webp versions for the browsers who support it, frozen thumbnail for the loading and cropped thumbnails for previews.

	Bleeding edge natural language processing stack: Leveraging the latest advance in NLP Sitefab offers: An accurate list of related posts (LSI algorithm), a client side faceted search and a smart client-side autocompletion

	Fully customizable: Its flexible plugin system and templatized parser make it easy and fast to customize SiteFab to your needs.

Design principles

Beside its technical features what separates SiteFab from other site generators
is its guiding principles:

	Configuration over convention: Every behavior is explictly specified.
There are no special files or directories. SiteFab only do what the
site configuration say. Nothing more, nothing less.

	Content Agnostic: There is only one type of content called post.
SiteFab makes no assumption about the content stored in the .md files. Its
job is to apply the configuration specified in the frontmatter to render
the specificied files and ensure that the enabled plugins are properly
executed.

	Atomicity: Each piece of content is self contained by having its own
configuration in its frontmatter including which template to use.
This allows to accomodate both complex sites with per page configuration
and very simple ones that reuse the same template again and again.

	Orthogonality: Site configuration, plugins and plugins configuration
are independent of the core engine so you can use as many configurations
and tweaked plugins you want. Additionally you can check those alongside
with your site content to have reproducible build, safe rollbacks and
concurrent version of the build pipeline (e.g alpha versus stable).

Alternatives

Here are some popular alternatives if SiteFab is not what you are looking for:

	Jekyll [https://jekyllrb.com/]: The most popular site generate, written in
Ruby.

	Hugo [https://gohugo.io/]: A popular site generator, written in Go that
focuses on speed.

	Pelican [https://blog.getpelican.com/]: Another site generator written
in Python.

SiteFab code overview

Data structure

SiteFab have three main data structures:

	Site: Object representation of the entire Site

	Post Site basic unit. Mostly created from the .md files and potentially by plugin. Each .md has its own post Object

	Collection: A collection of posts that share the same topic, template or microformat type.

Post Object

The post object is the basic element of the site. It is the parsed version of a file and contains the following elements:

	post.md: the md version of the post

	post.html: the html version of the post

	post.meta: the meta information related to the post. Meta come from the frontmatter data and the various plugins

	post.elements: List of elements contained in the post. For example the list of images. This is generated during the parsing.

post.meta details

FIXME

post.toc details

Here is an example of the toc array:

[
 ('Edwin VanCleef is a steal', 2, 0),
 ('Twilight drake', 2, 1),
 ('Twilight drake before the nerf', 2, 2)
]

The post.info.toc is a list that represents the post table of content. The field of each list element are:

	Field [0] The name of the section

	Field [1] The level of section. Basically 1 == H1, 2 == H2, …

	Field [2] The auto-increment id associated with the section. Mainly useful to generate unique anchor in the template.

post.elements details

Here is an example of what is contained in post.elements:

{'images': ['https://www.elie.net/image/..',
 '..'
],
 'links': ['https://www.elie.net/blog/hearth...',
 '...'
],
 'videos': []}

Collection Object

A collection is an object that as its name imply a list of posts that are regrouped by logical entity (e.g category, tag, template) along side with some meta data.

type of collections

The following type of collections are available:

	posts_by_category: regroup post by categories as specified in post frontmatter. Reflected in template as categories

	posts_by_tag: regroup post by tags as specified in post frontmatter. Reflected in templates as tags.

	posts_by_template: regroup posts that share the same rendering template (e.g blog_post). Reflected in templates as templates.

	posts_by_microdata: regroup posts that share the same microformat (e.g BlogPosting). Reflected in templates as microdata.

collection structure

Here is how a collection object is structured

collection:
 posts (list) # list of posts. Usually sorted from most recent to oldest.
 meta (object):
 name # name of the collection. E.g Web Security
 slug(str) #slug used for the url. E.g for Web Security the slug is web-security
 num_posts(int) #number of posts in the collection

internal objects

	plugin_data: contains the data generated by the plugins that is available into the templates in plugin_data and in the parser template as well via plugin_data

How to write a collection page template

Sitefab allow you to output a page that list all the posts that
have a given tag / categrory. Behavior of collection pages is defined
in the collection section of the site config.

To learn how to write template for post see the post page templating documentation documentation.

Available data

In a collection page the template have access to the following information:

	meta: collection meta information. Available data:

	name: name of the collection

	url: url of the collection

	num_posts: number of posts in the collection

	slug: normalized collection name

	posts: list of posts that belong to the category. Each post is a normal object as used in post page. It contains its content (post.content), meta data (post.meta), toc and info.

Example

Basic example of collection page that display the collection name and list all the posts that belong to it with their creation date:

<h1>{{meta.name}}</h1>

 {% for post in posts %}
 {{post.meta.creation_date}} - {{post.meta.title}}
 {% endfor %}

Frequently asked questions

Configuration

How to configure the parser output for basic HTML elements?

See the parser documentation.

TL;DR: It is easy and there are two ways: the first one is to edit the
templates used to emit the html elements the second is to programatically
change the templates using the Parser object API.

Plugins

How do I create my own plugin?

This is super easy see:

Why plugins configurations are in the config directory?

The decision to make the plugins configuration part of the site configuration
was made to allows you to have the flexibility to have different build
configuration with different plugin configuration.

This allows for example to a dev configuration with fewer plugins to speed up
the rendering or experiment with a new config as you develop a new version with
added functionality.

Windows specific Installation issues

If you get the error message “cannot be loaded because the execution of scripts is disabled on this system”,
you need to change your Windows policy as follow using powershell as admin:

Set-ExecutionPolicy Unrestricted -Force

Getting Started

Here is how to get up and running with Site Fab. Creating a website is done in three easy steps:

	install Site Fab and a web server

	Initialize your site and add content

	Generate your pages

Installing SiteFab

Currently the only way to install SiteFab is to install it from the source.

Clone the sources

Clone Site Fab into the directory of your choice

git clone https://github.com/ebursztein/SiteFab.git sitefab

install the needed package

Image processing (Pillow) requires a few packages.

OSX

brew install libtiff libjpeg webp little-cms2

install the required python packages

install the need python packages by using the requirements file

pip install -r requirements.txt

Note if you have a modern CPU you might want to enable the avx2 optimization for Pillow by running:

CC="cc -mavx2" pip install -U --force-reinstall pillow-simd

add sudo -H for version below Sierra.

Creating your site

The easiest way to get started is to use the demo site which is located in the the demo_site/ directory

	Copy it to the directory of you choice: cp -r demo_site my_site

	Change directory to the newly created one: cd my_site

	Generate the site: python ../sitefab.py -c config/sitefab.yaml generate

	The rendered site is in the generated/ directory. You can visualize the rendered files either by opening the index file in your browser or via a local server.

Configuring your site

copy the default configuration to a personalize one:

cp config/demo_site.yaml config/mysite.yaml

Configuration files are written in YAML [http://docs.ansible.com/ansible/YAMLSyntax.html].
Don’t forget to use your new configuration while generating :)

python ../sitefab.py -c config/mysite.yaml generate

plugins

FIXME

Writing content

All is left is to write your content :)

This is done by creating two files:

	A post file which contains your content and its meta data. This is the core of your site. See the post file documentation to learn how to write it.

	A template file which is used to specify how you would like to render your content in HTML/CSS/Javascript. Usually many posts use the same templates but you can create as many as you wish. See the template documentation for more information on how to write templates.

Remember in SiteFab terminology everything is a post even if you treat it as a page so if you would like for example to create an about page, you will write a post called about.md which contains which ever information you want and an about.html template that will render it. While it might seems confusing at first, treating each page the same way will makes it easier and more fool proof on the long run.

Note that SiteFab also generate Collections pages for each categories and tags that your posts have. See the collection documentation for more information.

Serving your site

For viewing a specifc file

FIXME: use python simple server

For production

See our nginx installation guide to learn how to install nginx and get the pretty print URLs working.

SiteFab manual page

Generating site

sitefab.py -c config/sitefab.yaml generate

Managing your SiteFab installation

Upgrading SiteFab

Here is how to upgrade SiteFab:

	Get the code latest version. Go to the directory of the code and do git pull

	Upgrade your site configuration: Go to your site directory and use the upgrade command: sitefab.py -c config/sitefab.yaml upgrade. Replace sitefab.yaml with the name of your config.

	*Configure the new plugins and options: Edit your plugins configuration file and make sure you have enabled the new plugins you want. The default plugins file being config/plugins.yaml

Using SiteFab with Nginx

Nginx installation

OSX

	update brew:

brew update

	installing Nginx

brew install nginx

Configuring Nginx

This guide only covers the part of the configuration you need to run your site with pretty print URLs. There are a lot of other configuration
variables you should take care of that are outside of this guide as there are plenty of ressources for it (e.g HTTPS, HTTP2, Compression and Caching).

Edit configuration.

OSX location: /usr/local/etc/nginx/nginx.conf
Replace the server block by the following configuration and make sure that root is pointing to where the site is (release directory)

 server {
 listen 8080;
 server_name localhost;
	 rewrite ^(/.*)\.html(\?.*)?$ $1$2 permanent;
	 rewrite ^/(.*)/$ /$1 permanent;
 	try_files $uri/index.html $uri.html $uri/ $uri =404;

 root /Users/elie/Sites/elie/generated/;
 index index.html index.htm;
		
 }

making pretty print urls working

To make pretty URL works the server configuation need to be changed to add in the server or location block:

 rewrite ^(/.*)\.html(\?.*)?$ $1$2 permanent;
	 rewrite ^/(.*)/$ /$1 permanent;
 	try_files $uri/index.html $uri.html $uri/ $uri =404;

Launching Nginx

Simple Launch

nginx

Launching at startup

brew services start nginx

Firewall

Firewall allow:

ufw allow 'Nginx Full'

Verify it works

systemctl status nginx

Nginx useful commands

Reloading nginx:

nginx -s reload

Stop:

nginx -s quit

Diving in

Getting started

	Have a basic site up and running in less than 10 minutes.

	Learn how to write a page

	Get answers for the most frequent questions.

Customizating the generation

	Explore all the available plugins

	Discover how to customize your templates

	Understand how to personalize the parser to suite your need such as adding a CSS class to the tag.

plugins list

List of available plugins

Name	Description	dependencies
—–	:————	:————
Post linter	Check posts for errors	
Read time	Compute how long it will take to read a given post	
Directory copier	Copy directories	
Backup Media	Backup all the files listed in .md in a backup directory (images,pdf)	
Related Posts	Use LSI to compute related posts.	
Sort collections	Sort collections by publication time to allow easy chronological display from templates.	
Jsonld Collection	Compute Jsonld object for each collection based on meta	compute_full_collection_url
Post full url	Compute the full qualified url for each post and store in the post.meta under full_url	
Jsonld	Compute Jsonld object for each page based on meta	compute_full_post_url
Search page	Generate a search page that run locally	
RSS	RSS	compute_full_post_url
Responsive Images	Create responsive images by using the picture element and creating multiple resolutions images	copy_dir
Collection full url	Compute the full qualified url for collection	
Sitemap	Generate Sitemap	compute_full_post_url, compute_full_collection_url

Writing a SiteFab plugin

This document describe how to write a plugin for SiteFab. A list of available plugins is available here

Writing a plugin is easy. First you have to decide whether what type of plugins you
want as it change where to put it. Then you need to use the correct plugin class
so SiteFab knows when to run it and call it with the information you need. Plugins
are dynamically loaded everytime you run SiteFab so once you have the code and
the config in place they will be called automatically without any additional
changes.

Plugin type

For the plugin type you have two options:

	For private plugins: you create a directory in your site project and then
in the sitefab.yaml you declare it as plugin dir. This allows you to have SiteFab
to run your custom code and revise it as you please.

	Public plugins: If your plugin can benefit the community you can simply
do a pull request to add it to the Plugin repo [https://github.com/ebursztein/sitefab-plugins].
Make sure to document it properly so people know how to use and who wrote it.

Workflow

FIXME: add a diagram of how th
e plugins are called

Plugins directory structure

Typically Plugins are stored in the Plugins/ directory which is organized
as follow:

	The first level represent the entity the plugin apply to

	The 2nd level represent the phase in which the plugin is to be applied

Note: Like everything with SiteFab the directory organization is just here for readability and don’t influence when plugins are called or with which data. What do define which data the plugin get and when it is called is its configuration and its class.

plugins/
 collection/
 processor/
 pendering/
 ..
 posts/
 preparsing/
 processor/
 rendering/
 ..
 site/
 ..
 ..

Plugin structure

Plugins use the YAPSY framework [http://yapsy.sourceforge.net/] and is composed of the following four files:

	.sitefab-plugin description file which describes the plugin.

	.py file which contains the actual code of the plugin.

	.md markdown file which the document the plugin.

	.yaml yaml file that contains the plugin default configuration.

Basic Example

Here is a basic plugin that add the fully qualified URL to each post meta information right after the post were parsed.

plugin meta information file

The meta information are located in the file named: your_plugin_module_name.sitefab-plugin

[Core]
Name = Copy directories
Module = copy_dir
Version = 1
Dependencies = module_x

[Documentation]
Filename = README.md
Description = Copy a set of directory from one place to another.

[Configuration]
Filename = config.yaml

Where

	The Name and Description are used to inform the users what the plugin do. Those information are returned by the site.get_plugin_info() method.

	The Module variable must be exactly the name of the python file that contains the code with the .py removed.

	Version allows to track change and when to notify the users when a plugin was changed.

	Dependencies is optional and is used to ensure that plugins are executed in the proper order and the needed one are activated. Not the ordering working for plugins of the same classes. Activation check works accross all class of plugins.

	The type of plugin is not defined in the description. It is defined by the class the plugin inherit from.

	The Documentation file prefered name is README.md so it show-up automatically on github. However you can use another filename if you want.
To know what to include in the documentation file refers to the documentation section below.

	The configuration file is used to provide the default configuration for the various plugin option. See the configuration section below.

plugin code

The code file for the plugin is named: **compute_full_post_url.sitefab-plugin

from SiteFab.Plugins import PostProcessor

class FullUrl(PostProcessor):
 def process(self, post, site, config):
 if post.meta.permanent_url:
 post.meta.full_url = "%s/%s" % (site.vars.url, post.meta.permanent_url)
 return True
 return False

Each plugin only implements the function process() which return True if executed, False otherwise.

As visible in the import, plugins must inherit from one of the plugin class available in SiteFab/plugins.py.
The class is used to define at which stage of the pipeline the plugin will be executed and the information passed to it. See below for the list of plugin class available and their process function prototype.

Important: While every plugin has access to the full site object to get the information it need, the site object should not be manipulated directly except if it is a site plugin. Choosing the most specific plugin type possible.

Configuration

Each plugin must come with a default configuration. It is used to generate the default “plugins.yaml” file so users know what to configure.

Here is for example the configuration of the read_time plugin:

wpm: 260 # avg number of words read per minute

This configuration is reflected in the plugins.yaml as follow:

read_time:
 enable: False
 wpm: 260 # avg number of words read per minute

In the plugin code you simply access the various parameters you specified via the config variable.

In our read_time plugin example, to get the average number of word per minutes (wpm), the plugin will do:

wpm = config.wpm

Notes:

	All plugins are disable by default to not suprise the user.

	The plugin.yaml default file is constructed from the plugin default configurations using the command sitefab.py -c config/sitefab.yaml sitefab_build.

	Plugins new options are reflected to the site configuration files by calling sitefab.py -c config/sitefab.yaml upgrade

Exposing plugin data to the templates and parser

To expose some data to the templates and potentially the parser (if the plugin is ran before) add your data to the site.plugin_data dict as follow:

dictionary of values
site.plugin_data[plugin_name] = {}
site.plugin_data[plugin_name]['key1'] = 'val1'

Array
site.plugin_data[plugin_name] = [1,2,3,4]

or any other structure you need
site.plugin_data[plugin_name] = "https://example.com"

Documentation

Plugin documentation are written in standard markdown format. They are collected to create an index of available plugin when the code is released.
Each plugin documentation follows the following template:

Plugin name
A description of what the plugin do.

Usage

How to use the plugin. Preferably with a full template code example
and a description of the options

Usage example

Configuration

Changlog

A simple list that list what changed. Something like:

- 12/23/16
 - Documentation updated to reflect how the plugin work

Credit
Who wrote the plugin, which library it use, who got the idea etc.

Type of plugins

FIXME Reorder the description to fit the directory hierachy

Pre Parsing

Site wide

Plugins that are used to initialize the structure and set global variable. For example copying assets to the release directory.

content

These plugins execute before the parsing

class ContentPreparsing():
 "Plugins that process content files before the parsing"

 def process(self, filename, site, config):
 """ Process a parsed post to add extra meta or change its HTML
 :param str filename: the filename of the content file process
 :param FabSite site: the site object
 """

Processing

Post Processor

Used to manipulate the content of post. Run between parsing and rendering.

class PostProcessor():
 "Plugins that process each post between the parsing and the rendering"

 def process(self, post, site, config):
 """ Process a parsed post to add extra meta or change its HTML
 :param post post: the post to process
 :param FabSite site: the site object
 """

Collection Processor

Used to manipulate the content of a collection (e.g adding meta data like statistics). Run between parsing and rendering.

class CollectionProcessor():
 "Plugins that process each collection between the parsing and the rendering"

 def process(self, post, site, config):
 """ Process a parsed post to add extra meta or change its HTML
 :param collection collection: the collection to process
 :param FabSite site: the site object
 """

Site processor

For example related posts

Rendering

Site Rendering

** Warning:** When accessing Collections via site object be aware that collections are a dict. To get their content make
sure to use site.collections.values()

Extra rendering

After the posts and collections are rendered, these plugins are invoked to generate extra-pages, javascript file etc…
For example both the sitemap and the search.js generation are done as ExtraRendering plugins.

class ExtraRendering():
 "Plugins that render additional pages"

 def process(self, unused, site, config):
 """ Generate additional page or file
 :param FabSite site: the site object
 """

Useful functions

Modifying the HTML rendering of a given HTML element

To modify how a given element will be rendered by the parser a plugin can override its jinja template as follow:

site.inject_parser_html_template("plugin_name", "html_elt", "template")

Where:

	plugin name is the name of the plugin.

	html_elt is the HTML element to override. For example img

	template is the new HTML template that will be used for rendering the targeted HTML element

FIXME: add a concrete example

Logging

Fixme

FAQ

Which plugins framework is used?

SiteFab use YAPSY [https://github.com/tibonihoo/yapsy].

How to get a variable defined in the plugin description file?

The info from the configuration files are represented as configParser [https://docs.python.org/2/library/configparser.html] object
This object can be accessed as follow:

get the value of a given property which is under a given section
plugin.details.get(section, property_name)

for example to get the Module info under the section core:

plugin.details.get("Core", "Module")

How to get reliably the config directory and other directories?

Don’t try to compute the path yourself, instead use the built-in helpers that do it for you:

site.get_config_dir()
site.get_templates_dir()
site.get_output_dir()
site.get_assets_dir()

So for example the post_linter plugin use these helpers to get its configuration files, specified in its option,
as follow:

config_file = site.get_config_dir() + site.config.plugins.post_linter.config_file

How to access all the site information from plugin code

The site variables from the site_vars.yaml and sitefab.yaml configs are
accessible as object via the site object. Here are few examples:

config object
pprint.pprint(site.config)

plugin configuration
var1 = site.config.plugins.myplugin.var1

Post file

The post file is where you store the content of a post. This page describe how to structure these files and make the most out of the them.

Structure

Each post file start with the frontmatter that contains the meta data associated with the post such as its author, title, publication date and so forth. These meta data are made available in the template used to render the post under the meta variable. The frontmatter must be formated in the YAML format [http://docs.ansible.com/ansible/YAMLSyntax.html]. The frontmatter is is isolated by lines that start with three dash:---.

The remainder of the file is your content that is expected to be written in the Markdown [https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet].

Here is an incomplete but valid example of what the structure of a post look like, a complete example is available below in the example subsection.

title: my title
category: my category

my content
This is the text in mark down that will be transformed in *html*

Frontmatter

The front matter is used to store the page configuration and meta data. It is written in the YAML format.

The meta data stored in the front matter are made available to template file during the generation process under the meta object. for example the title specified in the
meta data can be accessed in the template page as follow:

{% meta.title %}

available fields

Field	Type	Required?	Description	Example
——————–	———–	———	———–	——————-
title	string	Mandatory	Title of the page	Hacking IoT devices
author	string	Mandatory	author of the page	Elie, Bursztein
creation_date	string	Mandatory	When was the post created.	2 Jan 2017 17:23
update_date	string	Optional	When was the post was last updated. Used by search engine as hint.	5 Jan 2017 22:23
permanent_url	URL	Mandatory	The url of the page, relative to the hostname	/blog/security/hacking-iot-devices
category	string	Mandatory	Category of the post	security
tags	list	Optional	List of tags associated with the page	[web, performance]
abstract	string	Mandatory	short description of the page. used in meta and search	this is how to hack iot device
template	filename	Mandatory	which template to use to render the page (without the .html extension)	post
lang	ISO code (default:site lang)	Optional	language of the page used for i18n	en
hidden	bool	Optional (default:false)	Don’t list the post in collections or RSS or any other list	true

Specifying which template to apply to which post

The template used to render a given post file is specified in the frontmatter under the template variable. When specficying the template filename in the frontmatter omit the .html at the end. You instruct SiteFab where to fetch the templates from by specifying the following variable in the site configuration:

dir:
 templates: "templates/" # where to fetch the templates used to render the various posts

Date fields

When parsing the content, SiteFab attempts to find all the date fields and create for each of them an additional field that contains the data timestamp which make it
easier to manipulate the date and output it formated in various ways thanks to the template filter format_date. For example SiteFab will recognize the following
field and create an additional meta data field update_date_ts which will contains the date as timestamp:

update_date: 18 oct 2016 13:29

Custom fields

On top of the specific field, any additional field can be added to the frontmatter and will be accessible by the template as part of the meta object.
For example the easiest way to have a banner image for each post is too add a meta banner:

banner: /static/images/iot-device-banner.jpg

which then can be used in the template page as follow:

Category vs Tags

The reason why Sitefab have both a category and tags for a given is to allows summary pages (e.g the homepage) to display each post only once via the categories.
Categories are also used in the generation of the URL slugs.

Complete example

Here is an example of a frontmatter. It is the one I used to generate the publication page for one of my paper on my site [https://www.elie.net/publication/i-am-a-legend-hacking-hearthstone-using-statistical-learning-method]

template: publication
title: I am a legend hacking Hearthstone using statistical learning methods
banner: https://www.elie.net/image/public/1476002309/i-am-a-legend-hacking-hearthstone-using-statistical-learning-methods.jpg
permanent_url: publication/i-am-a-legend-hacking-hearthstone-using-statistical-learning-method
lang: en

creation_date: 18 oct 2016 13:29

category: video game

tags:
 - hearthstone
 - offensive technologies
 - machine learning

seo_keywords:
 - hearthstone
 - hearthstone card game
 - hearthstone bot
 - hearthstone cards
 - ccg
 - tgc

authors:
 - Elie, Bursztein

conference_name: Computational Intelligence and Games conference
conference_short_name: CIG
conference_location: Santorini, Greece
conference_publisher: IEEE

files:
 paper: https://cdn.elie.net/publications/i-am-a-legend-hacking-hearthstone-using-statistical-learning-methods.pdf

abstract: this paper demonstrate how to apply machine learning to Hearthstone to predict opponent future plays and game outcome.

How to write post template

This page describe how to create template to render your site content. See how to write a post to learn how to write the post files that hold your site contnet.
For the templating of the collection page which are generate for a group of post see the collection template documentation.

Specifying which template to apply to which post

The template used to render a given post file is specified in the frontmatter under the template variable. When specficying the template filename in the frontmatter omit the .html at the end. You instruct SiteFab where to fetch the templates from by specifying the following variable in the site configuration:

dir:
 templates: "templates/" # where to fetch the templates used to render the various posts

Accessing meta data

All meta information specified in the content file frontmatter are directly available from the meta variable. For example to get the title of the post in a template one will write:

Title: {{ meta.title }}

commonly available meta

While most variables are optional, usually the frontmatter contains a few common variables:

	meta.title : title of the page

	meta.language: language of the page

TOC

Getting the table of content (toc) and list the section of the page in the template:

{% for elt in meta.toc %}
 <li class="headline-{{elt[1]}}">{{elt[0]}}
{%endfor%}

Each elt in the toc contains the following information:

	elt[0]: headline value. For example “my headline”

	elt[1]: headline size. For example: 2 for a H2, 3 for a H3

	elt[2]: headline id. This is a sequential count that allows to jump to the headline in the text using
anchor href. For example the second headline will have the id 2. See example above

Content

Getting the .md content rendered as HTML is accesible in the template as follow:

{{content}}

code hilighting

Sitefab uses pygments [http://pygments.org/] to perform code hilighting. During the parsing phase
the code blocks are automatically processed and the needed annotation are added. Parsing option are configured
in the config under the parser category:

parser:
 code_highlighting_theme: "monokai" # Template to apply, choose from https://help.farbox.com/pygments.html
 code_display_line_num: True # display line number?

important: while the parser do add the needed HTML and CSS classname, the CSS is not included in the page for obvious reason. It is your responsability to embed the CSS of the template of your choice directly into your CSS file. You can get them here on github [https://github.com/richleland/pygments-css]

Custom template filters

FIXME (in plugins/template)

Accessing plugin data

how to get image size

Getting the image width for an image for which the url is src:

plugin_data['image_info'][src]['width']

FIXME: more example -> link to the plugin list

Related posts

if the related_post plugin is activated, related posts are available as follow:

{% for related_post in meta.related_posts %}
 {{ related_post.meta.title }} ({{ related_post.score}})

{% endfor%}

Collections

Collections are list of posts grouped by a given criteria. The following collections are available in the post template (for the collection page see below):

	categories: regroup post by categories as specified in post frontmatter

	tags: regroup post by tags as specified in post frontmatter

	templates: regroup posts that share the same rendering template (e.g blog_post)

	microdata: regroup posts that share the same microformat (e.g BlogPosting)

Examples

Getting the url of the category or tags

If you want to url of the post category you can do:

{{ meta.category }}

Same works for the tags. Assuming you have the tag you are interested in the tag variable:

{{ tag }}

Listing all the post related to security in the footer

To list all the post related to security in yout footer you can do:

{% for post in categories.security.posts %}
 {# the if is used to filter out pages which are not blog articles #}
 {% if post.meta.template == "blog_post" %}
 {{ post.meta.title }}
 {% endif %}
{% endfor %}

Listing the five most recent posts that belongs to a category

To list the five most recent post that use the blog_post template:

{% for post in templates.blog_post.posts[:10] %}
 {{ post.meta.title }}
{% endfor %}

Listing all the blog posts by categories

{% for category, data in categories.items() %}
 <h3>{{ category }} </h3>

 {% for post in data.posts %}
 {# the if is used to filter out pages which are not blog articles #}
 {% if post.meta.template == "blog_post" %}
 {{ post.meta.title }}
 {% endif %}
 {% endfor %}

{% endfor %}

Format

{% for related_post in meta.related_posts %}
{{ related_post.meta.title }} ({{ related_post.score}})
{% endfor%}

 heading 1

microdata_type: BlogPosting
hidden: false

title: ‘Test’
permanent_url: blog/test
banner: /static/images/banner/test.jpg
creation_date: 14 Jan 2013 04:24
update_date: 14 Jan 2013 04:24

tags:

	security

authors:

	Elie, Bursztein

heading 1

this is a test.

heading 2

	This is

	a list

‘youtube vid’
[image: %27https://elie.net/static/images/elie-profile-picture.jpg%27]image

heading 3

bold test
italic test

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome t